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Introduction, Src year 1 annual report 

The activity of Src is commonly elevated in breast cancer and breast cancer cell lines, 
but the significance of this elevation is not known. Many breast cancers and breast 
cancer cell lines also contain estrogen receptors and are stimulated to grow by estrogen. 

In preliminary studies we found that increasing Src activity potentiates the ability of the 
estrogen receptor to stimulate transcription of target genes. These prelimary studies 

suggest a possible connection between Src activity and estrogen receptor activity that we 
propose to explore. We have two objectives. One is to understand in detail the molecular 
pathway whereby activated Src and JNK leads to an increase in estrogen receptor 
activity. A second objective is to understand the potential role of Src in estrogen induced 
mammary ductal development and estrogen-induced breast cancer proliferation. 
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(5) BODY 

We had thee tasks: 

Task 1. To identify the pathway leading from Src activated JNK to increased estrogen 
receptor AF-1 activity (months 1-18). 

Task 2. To determine the role of Src in estrogen induced mammary gland ductal 
epithelial proliferation and branching at puberty, (months 24-36) 

Task 3. Determine the role of Src in estrogen stimulated tumor growth by studying the 
effects of estrogen on the proliferation of breast cancer cell lines in which Src has been 
made nonfunctional (months 24-36) 

In this first year of the project most of our progress has been on task 1. We have 

accomplished much of this task. Our progress is detailed in the appended manuscript, 
Potentiation of estrogen receptor AF-1 by Src/JNK through a serine 118-independent 

pathay, which is now in the final stages of review for Molecular Endocrinology *. In 
particular, we have carefully confirmed and documented that the ER AF-1 function is the 
Src/JNK target. We have demonstrated that the target maps to a subdomain of AF-1, 
amino acids 1-100. We also demonstrate that the Src/JNK target does not involve 
phosphorylation of S118, the target of ERKs. Finally we show that the CBP/pl60 
coactivator complex appears to be the JNK target (ref) rathar than ER itself. 

We also desired to map potential sites of phosphorylation in CBP and pl60s by 
JNK as part of task 1. Unfortunately this is proving more difficult than anticipated 
because of multiple sites of phosphorylation. We will report more fully on this aspect of 
the task in a future report. 

We have not as yet worked on task 2. 
Task 3 was not anticipated to begin in year one, but we have made some 

unexpected progress towards this aim, which is also described in the appended 
manuscript by Feng et al. We found that in MCF-7 breast cancer cells that the activity of 
the endogenous ER was enhanced by elevating Src activity by transfection with v-Src. 
This establishes that in breast cancer cell lines that ER activity is under Src regulation, 
and provides a critical control for the experiment in which we determine whether 
reducing Src activity in these cells reduces ER action on transcription and proliferation. 
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(6) KEY RESEARCH ACCOMPLISHMENTS 

• Demonstrated that the Src tyrosine kinase, known to be elevated in breast cancer, 
increase the activity of the estrogen receptor, a critical proliferative factor in many 
breast cancers. 

• Demonstrated that the pathway from Src leads to JNK, a MAP kinase, and then to 
estrogen receptor activator function 1, most likely through the coactivators 
CBP/pl60. 

• Demonstrated that increased Src activity potentiates estrogen action in human breast 
cancer cells in culture. 
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(7) REPORTABLE OUTCOMES. 

One manuscript, by Feng et al," Potentiation of estrogen receptor AF-1 by Src/JNK 

through a serine 118-independent pathway, "which is currently in the final stages of 
review for Molecular Endocrinology and is appended. 
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(8) CONCLUSIONS; 

Our main conclusions are first, that the Src tyrosine kinase, known to be elevated in 
breast cancer, increases the activity of the estrogen receptor, a critical proliferative factor 
in many breast cancers. This activity of Src is seen in transfected cells of various kinds 
and also seen in MCF-7 cells expressing their own estrogen receptor. This conclusion 
suggests that overactivity of Src in breast cancer may be leading to hyper activity of the 
estrogen receptor and may be playing a key role in estrogen dependent breast cancer. "So 

what?" If the conclusion is correct it will suggest new ways to intervene in breast cancer 
prevention and therapy. 

We also conclude that the pathway from Src leads to JNK, a MAP kinase, and then to 
estrogen receptor activator function 1, most likely through the coactivators CBP/pl60. 
"So what?"   These conclusions suggest that drugs that might target any of the steps in 
this pathway, might be useful as potential treatments for hormone dependent breast 
cancer. 
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Abstract: 

Estrogen receptor (ER) may be activated either by ligand or by signals from 

tyrosine kinase-linked cell surface receptors.    We investigated whether the non- 

receptor Src tyrosine kinase could affect ER activity.   Expression of 

constitutively active Src or stimulation of the endogenous Src/JNK pathway 

enhances transcriptional activation by the estrogen-ER complex and strongly 

stimulates the otherwise weak activation by the tamoxifen-ER complex.   Src 

affects ER activation function 1 (AF-1), and not ER AF-2, and does so through 

its tyrosine kinase activity.   This effect of Src is mediated partly through a 

Raf/MEK/ERK signaling cascade and partly through a MEKK/JNKK/JNK 

cascade.   Although, as previously shown, Src action through activated ERK 

stimulates AF-1 by phosphorylation at S118, Src action through activated JNK 

neither leads to phosphorylation of S118, nor requires S118 for its action.   We 

therefore suggest that the Src/JNK pathway enhances AF-1 activity by 

modification of ER AF-1 associated proteins. Src potentiates activation functions 

in CBP and GRIP1, and we discuss the possibility that the Src/JNK pathway may 

enhance the activity of these coactivators, which are known to mediate AF-1 

action. 



Introduction 

The action of estrogen receptor alpha (hereafter, ER) is regulated both by binding of ligand and by 

inputs from signal transduction cascades. Binding of estrogen to ER frees it from a complex with 

heat shock proteins, and allows ER to bind estrogen response elements (EREs) in the promoter 

region of target genes (for review see [1]). ER then stimulates transcription via the concerted 

action of the AF-1 activation function in its amino terminus and the hormone-dependent activation 

function, AF-2, that lies within the LBD. The antiestrogen tamoxifen allows release from heat 

shock proteins and ERE binding, but blocks AF-2 (reviewed in [1,2]). Tamoxifen allows weak 

AF-1 activity, but in many cases this is insufficient to increase gene expression [3]. Other 

antiestrogens, such as raloxifene and ICI 182,780 (ICI), allow neither AF-1 nor AF-2 activity 

[4,5]. Both activation functions work by recruiting a coactivator complex to the promoter 

(reviewed in [1,6,7]). The complex contains a pl60 protein, such as SRC-l(N-CoAl) [8,9], 

GRIP1 (TIF2, N-CoA2) [10-12], or p/CIP (AIB1, ACTR, TRAM-1, RAC3) [13-17], p300/CBP 

[9,18-20] and p/CAF [21-23] (for review see [7]). AF-1 binds the C-terminus of the pi60 

component [24], whereas estrogen bound AF-2 binds tightly to a separate regions of the pi 60s 

(the NR boxes) [13,25-29]. The coactivator complex, once recruited, is presumed to stimulate 

transcription by interactions with components of the basal transcription machinery and also by its 

histone acetyl-transferase activity that may remodel chromatin and allow access to the 

transcriptional template [15,30-32]. 

ER activity is also stimulated by signaling pathways that are activated when growth factors, 

such as EGF and IGF1, bind their tyrosine kinase linked receptors. Growth factors are sometimes 

sufficient to activate ER in the apparent absence of ligand [33-36]. More commonly, growth 

factors synergize with ligand by enhancing AF-1 activity. EGF binding to the EGF receptor 

results in sequential activation of Ras, Raf, MEK, and the MAP kinases ERK1 and ERK2, which 

phosphorylate ER at Serine 118 in the N-terminal domain and potentiate AF-1 activity [36-38]. 

Mutation of SI 18 to alanine blocks ER phosphorylation by MAP kinases and potentiation of AF-1 

action by growth factors [36-38]. Furthermore, the SI 18A mutation also reduces basal 



phosphorylation of SI 18 by unspecified kinases [38] and decreases basal AF-1 activity [39,40]. 

Phosphorylated ER AF-1 shows enhanced binding to the p68 RNA helicase, which is thought to 

account for its enhanced transcriptional activity [41]. AF-1/GRIP1 interactions map to the N- 

terminal region of the ER AB domain, which has not been implicated in growth factor enhancement 

of AF-1 activity, and are unaffected by mutations in serine 118 [24]. 

ER is likely to be subject to signal transduction inputs during developmental and repair 

processes and may also be subject to abnormal stimulation by such pathways during pathological 

states, such as cancer. Many breast tumors exhibit elevated expression of growth factors such as 

EGF, Her2/neu, IGFs and their receptors [42-45]. Furthermore, more than 80% of primary breast 

cancers show increased activity of the non-receptor Src tyrosine kinase activity compared with 

normal breast tissue [46-49], reviewed in ([50]). Elevated Src activity leads to activation of 

multiple signal transduction cascades (reviewed in [51-53]). Src activates both the ERK and JNK 

subgroups of MAP kinases (for examples see [54,55]). Src activates ERKs presumably via Ras 

and the Raf/MEK/ERK kinase cascade (see, for example, [54]). It also activates JNKs, 

presumably via Rac-1 and related GTPases, and the sequential activation of the 

MEKK/JNKK/JNK kinase cascade [56]. In light of these reports we investigated whether 

activated Src enhances ER action. We find that Src does so, and that it specifically enhances ER 

AF-1 activity via two independent mechanisms. One involves phosphorylation at SI 18 via Src 

activation of the Rafl-MEK-ERK pathway. The other is mediated by Src activation of the MEKK- 

JNKK-JNK pathway, the target of which does not appear to be S118, or even ER. We discuss 

the possibility that JNKs target one of the several coactivators that associate with the ER. 

Results 

Src potentiates ER AF-1. 

Src activity in breast cancer cells and cell lines is often elevated up to 30-fold [49]. To examine the 

effects of elevated Src activity on ER action, we transfected expression vectors for v-Src and 



control vectors into HeLa cells along with expression vectors for ER and an ERE responsive 

reporter gene (ERE:HSV-TK-CAT). v-Src is a viral derivative of cellular Src (c-Src) which has at 

least 10-fold higher kinase activity than c-Src. Fig. 1A shows that v-Src potentiated ER 

transcriptional activity by two fold in the presence of 17ß-estradiol (E2), a primary estrogen 

agonist activating both AF-1 and AF-2. More strikingly, v-Src also enhanced ER transcriptional 

activity by about fifteen fold in the presence of tamoxifen (Tarn), an ER ligand that inhibits AF-2, 

but allows AF-1 activity [3]. v-Src also enhanced ER transcriptional activity in the presence of 

raloxifene (Ral), an ER ligand that allows partial AF-1 activity, but did not enhance ER 

transcriptional activity in the presence of ICI 182,780, an ER ligand that blocks the activities of 

both AF-1 and AF-2 [3,57-59], (Fig. 1A, inset with expanded scale). Over the course of this 

study, v-Src enhanced the overall levels of estrogen response by between 50% and four fold, but 

consistently yielded larger enhancements of tamoxifen response. Consequently, v-Src increased 

the overall level of tamoxifen response from a tiny percentage of estrogen response to 15-40% of 

the overall estrogen response. 

To ask whether v-Src effects upon ER activity could be explained by increases in ER 

levels, we performed western blots on extracts of cells that had been transfected with different 

amounts of ER in the presence and absence of transfected v-Src. Fig. IB shows that the amount 

of ER increased as a function of transfected ER expression vector in the absence of v-Src, and that 

v-Src increased ER levels by about three fold. In parallel, v-Src gave much stronger potentiation 

of ER action at the ERE responsive reporter gene, even at ER levels that were optimal for estrogen 

and tamoxifen response (Fig. IB lower panel). In particular, the ER activity obtained in the 

presence of 3u.g of transfected ER and v-Src exceeded the ER activity obtained in the presence of 

lOjig of transfected ER and no v-Src, even though the former contained lower amounts of ER 

protein. Thus, v-Src increases ER transcriptional activity, especially in the presence of tamoxifen. 

To ask whether v-Src enhancement of ER activity might occur under more physiological 

conditions, we first examined the amount of v-Src required for enhancement of ER activity. v-Src 

potentiation of tamoxifen response could be observed with as little as 300-600ng of transfected v- 
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Src expression vector (Fig. 1C). We then examined v-Src action upon the ERE responsive reporter 

in MCF-7 breast tumor cells, which express endogenous ER (Fig. ID). Here, endogenous ER 

showed significant constitutive activity, which was further elevated by addition of estradiol but 

completely suppressed by tamoxifen and ICI. In the presence of transfected v-Src, both the 

constitutive and estrogen-dependent transcriptional activity were modestly elevated and, once 

again, tamoxifen-dependent transcriptional enhancement was strongly increased. Thus, v-Src 

enhances the activity of the estrogen-ER and tamoxifen-ER complexes in breast cells, just as it 

does in HeLa cells. 

That the ER response to v-Src overexpression is more dramatic in the presence of 

tamoxifen or raloxifene than in the presence of estrogen, and that there is no response in the 

presence of ICI suggests that ER AF-1 might be a primary action target of v-Src. To further 

investigate whether the target of v-Src action was AF-1 or AF-2, we examined the effect of v-Src 

overexpression upon the activity of a reporter gene with a promoter containing a TATA box and 

multiple binding sites for the yeast GAL4 protein (5xGALRE-Elb-tata-LUC). This reporter was 

then activated with the DNA binding domain of GAL4 fused to the ER A/B region containing AF- 

1 (GAL4-ER(A/B)), to the ER LBD containing AF-2 (GAL4-ER(LBD)), or to VP16 (GAL4- 

VP16). As shown in Fig. IE, v-Src potentiated the GAL4-ER(A/B) transcriptional function 

around 30-40 fold, but had only a minimal effect on GAL4-LBD or GAL4-VP16. Like v-Src 

action upon the tamoxifen-liganded ER, v-Src potentiation of AF-1 activity could be detected at 

optimal levels of transfected GAL4-ER(A/B) expression vector (data not shown). Thus, v-Src 

strongly enhances ER AF-1 activity. These observations are consistent with the strong activation 

of the tamoxifen-bound ER by v-Src and confirm that the A/B domain of ER, which contains AF- 

1, is the v-Src target. 

Src action Upon ER is Independent of Tyrosine 537. 

Some reports have suggested that Src may be able to directly phosphorylate ER at tyrosine 537 

(Y537) within the ER-LBD [60-62], although this remains controversial. In fact, mutations within 



Y537 were later shown to enhance ER activity in the absence of hormone, by allowing ligand- 

independent interactions of ER AF-2 with its target coactivators [63-65]. To ask whether Y537 

phosphorylation was required for v-Src action upon the ER, we examined the effect of v-Src 

overexpression upon ERs bearing mutations within this residue. Fig. 2 shows that both ER and 

ER-G400V, an ER mutant that lacks constitutive activity, but is otherwise normal [66], elicited 

strong estrogen responses and weak tamoxifen responses from the ERE responsive reporter. In 

parallel, ERs bearing either an arginine (Y537R) or serine (Y537S) substitution at position 537 

showed the expected increase in constitutive activity, but retained very little activity in the presence 

of tamoxifen. In the presence of transfected v-Src, both ER and each of the ER mutants (G400V, 

Y537R and Y537S) showed modestly enhanced transcriptional activity in the presence and absence 

of estradiol and a larger enhancement of transcriptional activity in the presence of tamoxifen. We 

therefore conclude that the weak v-Src enhancement of the activity of the estrogen-ER complex, 

and the strong enhancement of activity of the tamoxifen-ER complex, are both independent of ER 

phosphorylation at tyrosine 537. 

Src kinase activity is required for potentiation of ER AF-1. 

To investigate whether elevated Src kinase activity itself, and not some other feature of v-Src, leads 

to potentiation of ER action, we examined the effect of various Src expression vectors and tyrosine 

kinase inhibitors upon ER AF-1 activity. Wild type c-Src and constitutively activated c- 

Src(Y527F) potentiated the activity of the GAL-ER(A/B) fusion protein by 2-3- and 5-fold, 

respectively (Fig 3). The kinase-inactive mutant Src(Y295K, Y527F), in contrast, was unable to 

enhance AF-1. Moreover, enhancement of ER AF-1 by Src was blocked, and even reduced below 

basal levels, by genistein and Herbymicin A, two inhibitors of Src tyrosine kinase activity (Fig. 3). 

Control experiments indicated that both of these inhibitors were without effect on GAL-VP16 (data 

not shown). These results indicate that the intrinsic tyrosine kinase, and not another feature of the 

v-Src molecule, mediates the enhancement of ER activities. That the kinase inhibitors reduce AF-1 
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level below basal may further suggest that endogenous Src tyrosine kinase activity might underlie 

basal AF-1 activity. 

Src potentiates AF-b both the Ras-Rafl-MEK-ERK and the Rac-MEKK-JNKK- 

JNK pathways. 

Src tyrosine kinase might affect AF-1 either directly, or indirectly through the numerous signal 

transduction cascades that Src is known to initiate. While Src is generally associated with the 

plasma membrane, and ER is generally nuclear, these locations are not rigid. In particular, there 

are reports of ER associated with the cell surface [67,68]. Thus, there is nothing a priori to 

exclude the possibility that Src might directly phosphorylate the ER AF-1 domain. We therefore 

tested whether a GST-ER(A/B) fusion protein was a substrate for activated c-Src kinase. GST- 

ER(A/B) was efficiently phosphorylated by activated ERK2 MAP kinase, consistent with other 

studies [37], but not by activated c-Src kinase (Fig. 4A). Thus, ER is not a direct substrate of Src. 

We infer that Src must activate ER AF-1 indirectly through phosphorylation cascades. 

Because Src is known to cause to MAP kinase activation, and the well known pathway of 

Ras, Raf-1, MEK and ERK activation enhances AF-1 activity through serine 118 phosphorylation, 

we asked whether v-Src might enhance ER activity by initiating the Raf-1/MEK/ERK cascade. We 

first examined the effect of various inhibitors of this pathway upon EGF stimulation of the 

transcription factor ELK-1, which responds even more dramatically to EGF than does the ER. 

As shown in Fig. 4B, left, each of these reagents nearly abolished the EGF activation of a GAL- 

Elkl fusion protein. PD 98059, a specific inhibitor of MEK activation [69], also blocked EGF 

activation of GAL-Elkl. Thus, these inhibitors work effectively to block transcription mediated by 

the ERK pathway in these transfected cells. In contrast, only modest (20-40%, shown) decreases 

in v-Src effects on GAL-ER (A/B) were detected. Even high levels of transiently transfected 

expression vectors for each dominant negative protein produced no more than 30-40% inhibition of 

Src action (data not shown). Similar modest inhibition was obtained with PD 98059. These 



results indicate that Src potentiation of ER AF-1 is only partly mediated by the Ras/Raf/MEK/ERK 

pathway and suggest that another pathway must also be involved. 

Because the Rac-MEKK-JNKK-JNK pathway is also activated by v-Src, we then asked 

whether this pathway might mediate v-Src effects upon the ER. Dominant negative Rac(S 17N) or 

MEKK1(K432M), strongly inhibited v-Src activation of ER AF-1 (Fig. 4C). In a separate 

experiment a vector for dominant negative JNKK4(K116R) eliminated the induction mediated by 

short term exposure to v-Src expression or stimulation of the endogenous Src/JNK pathway 

treatment with the cytokine TNFa (Fig. 4D). These observations indicate that the route from Src 

to AF-1 proceeds through both the Ras-Raf-MEK and the Rac-MEKK-JNKK pathways and that 

the ERK and JNK kinases are the true effectors of Src action. 

The role of the ERK and JNK kinases was then confirmed by examining the effect of 

elevated expression of these kinases on Src action. Overexpressed JNK1 and ERK2 synergized 

with v-Src to activate ER AF-1 (Fig. 4E). Neither JNK nor ERK alone was sufficient to enhance 

AF-1 activity, suggesting that both required inputs from upstream kinase cascades to enhance AF-1 

activity. In contrast, overexpression of another MAP kinase, p38, which is also activated by 

JNKK1 [70], inhibited, rather than synergized with, the v-Src activation of ER AF-1. While the 

mechanism of this dominant negative effect of p38 is unknown, the fact that p38 acts as a dominant 

negative indicates that p38 does not mediate Src activation of AF-1.  In summary, these studies 

indicate that the route from Src to AF-1 proceeds through both a Ras-Raf-MEK-ERK and a Rac- 

MEKK-JNKK-JNK pathway. 

Src potentiates AF-1 both by ERK mediated phosphorylation of S118 and by a 

JNK mediated, SI 18 independent, pathway. 

As noted previously, activation of the Ras-Raf-MEK-ERK pathway leads to phosphorylation of 

ER S118 by ERKs. We therefore investigated whether S118, or the nearby S104 and S106, 

played similar roles in Src activation of AF-1. We first examined the effect of S118 mutations to 

glutamic acid (E), which mimics the negative charge of phosphorylated serine and allows stronger 



ER AF-1 binding to p68 RNA helicase [36,41], or arginine (R), which blocks SI 18 

phosphorylation. As expected, ERS118E showed a slight increase in tamoxifen response relative 

to ER, and ERS118R showed no tamoxifen response (Fig. 5A). In parallel, transfected v-Src 

gave a much stronger enhancement of tamoxifen response, suggesting that the increased negative 

charge of the ER-S118E mutant was insufficient to the mimic the enhancement of AF-1 activity 

that is obtained with v-Src. Furthermore, ERS118E dependent tamoxifen responses were still 

strongly enhanced by v-Src and ERS118R only reduced the overall level of tamoxifen response in 

the presence of v-Src by about 50%. These results suggest that v-Src potentiation of AF-1 activity 

is partially insensitive to mutation of S118. Mutation of S118 to alanine also decreased the ability 

of v-Src to potentiate GAL-ER (A/B) by 20 to 40% (Fig. 5B and data not shown). There was no 

further decrease in AF-1 activity when all three serines were mutated to alanine (S 104,106,118A). 

Thus, v-Src enhancement of isolated AF-1 is also partially insensitive to mutation of the AF-1 

phosphorylation sites. 

It is striking that Src has a major effect on AF-1, even in the presence of the triple serine 

mutation. To test whether this effect is mediated by the non-ERK (that is, JNK) part of the Src- 

AF-1 pathway, we examined Src activation of wild type and triple mutant GAL-ER (A/B) in the 

presence of PD 98059. This inhibitor reduced Src potentiation of AF-1 activity by about 50%, as 

did the mutation of the three serines (Fig. 5C). However, PD 98059 had no effect on the residual 

Src activation of the triple serine mutant. This result indicates that the portion of the Src effect that 

is independent of SI 18 phosphorylation is also ERK independent. Because JNK activation is not 

blocked by PD 98059 [69], and data not shown), we infer that the serine-independent portion of 

AF-1 activation is likely to be the portion that is mediated by JNKs. 

To examine the role of JNKs more directly, we examined the ability of Src and 

overexpressed JNK kinase to cooperate in AF-1 activation. As shown in Fig 5D, v-Src and JNK 

cooperated to enhance the activity of GAL-A/B S118A mutant even more strongly than v-Src 

alone. Thus, the Src-JNK pathway enhances AF-1 activity in a manner that is independent of 

phosphorylation at SI 18. Surprisingly, ERK1 now specifically inhibited v-Src action at the GAL- 
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A/B Sl 18A mutant, much as p38 inhibited v-Src action upon wild type AF-1 (Fig. 4E). Again, 

we do not have a ready explanation for this effect, but speculate that transfected ERKs could inhibit 

other second messenger inputs to AF-1, and that this effect is only detectable when their 

stimulatory effect upon ER AF-1 activity is abolished. Nonetheless, taken together, our results 

suggest that v-Src enhances AF-1 activity via two independent pathways, one that involves ERKs 

and targets the AF-1 serine cluster and one that involves JNKs and is independent of the serine 

cluster. 

Src activates two separate subdomains of AF-1 which show differential 

sensitivity to inhibitors of MAP kinases. 

AF-1 is complex, and it has been suggested that AF-1 is comprised of independent subdomains 

[39,57,71 ]. We therefore tested some of these candidate subdomains for response to Src. We 

transfected expression vectors for ERs with specific deletions of the N-terminal (AB) domain into 

HeLa cells and asked whether they would elicit a tamoxifen response from the ERE-CAT reporter 

gene in the presence or absence of cotransfected v-Src (Fig. 6A). As expected, v-Src enhanced the 

tamoxifen response obtained with wild type ER by about eight fold, and showed no effect upon an 

ER truncation that lacked the A/B domain (AAB, 185). Transfected v-Src also enhanced the 

tamoxifen response obtained with an ER truncation that contained amino acids 1-129 by seven 

fold. This truncation contains all of the ER sequences that are required for AF-1 activity in HeLa 

cells [57], so this result underscores the notion that v-Src acts upon AF-1. Transfected v-Src 

enhanced the tamoxifen responses obtained with ERs bearing either the N-terminal (amino acids 1- 

94) or C-terminal (amino acids 101-185) AF-1 subdomains by about five fold. Furthermore, Src 

responsiveness of the C-terminal AF-1 subdomain was lost when the region from 101 to 117, 

which contains the serine cluster, was deleted (117). Together, these observations indicate that v- 

Src targets two separate sub-domains in AF-1. One lies between amino acids 1-94, and a second 

lies between amino acids 101-129, which overlaps the serine cluster. Although the role of the 

serine cluster as a target of second messengers is well established, this is the first direct indication 
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that the N-terminal region of AF-1 (amino acids 1-94) contributes to second messenger stimulation 

of AF-1 activity. 

Control transfections revealed that PD 98059 completely failed to inhibit the activity of the 

ER truncation that only contained the N-terminal AF-1 subdomain (amino acids 1-94, Fig. 6B). 

Thus, v-Src action upon the N-terminal AF-1 subdomain does not proceed through MAP kinase 

activation, which implies that v-Src action upon this region proceeds through JNK kinases. 

Activated JNKs do not phosphorylate the AF-1 domain suggesting an indirect 

mode of action. 

The above studies indicate that Src activates AF-1 through at least two pathways, one of which is 

mediated through JNK and does not require SI 18. To investigate whether JNK might 

phosphorylate another site within AF-1, we tested the ability of JNKs extracted from cells that had 

been treated with the pro inflammatory cytokine and activator of Src/JNK, TNFoc, [70] for their 

ability to phosphorylate the AF-1 domain in vitro. Activated JNKs were able to efficiently 

phosphorylate a c-Jun substrate in vitro (Fig. 7 top), but were unable to phosphorylate an AF-1 

substrate, even though this substrate had been efficiently phosphorylated by activated ERK as 

shown earlier (Fig. 4A). We conclude that activated JNKs do not directly phosphorylate the ER 

AF-1 domain. 

Src can potentiate AF-1 in conditions where AF-1 is mediated by the GRIP1/CBP 

complex. 

Our results show that Src stimulates ER AF-1 activity through JNK kinases, and that the JNKs do 

not phosphorylate the AF-1 domain. This suggests that the action of the JNK pathway on AF-1 

may be mediated by phosphorylation of another protein that mediates ER activity. Basal AF-1 

activity is mediated by a complex of a pl60 such as GRJP1, along with p300/CBP [24]. The 

essential contact for this action is between the N-terminal sub-domain of AF-1 and the C terminal 
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domain of GRIP1. We therefore asked whether v-Src enhanced AF-1 under conditions in which 

AF-1 is itself enhanced by overexpression of GRIP 1 and CBP. 

We first cotransfected expression vectors for GRIP1 or CBP along with vectors for GAL- 

AF-1 and v-Src, and asked whether the coactivators would potentiate v-Src action on the 

GALRE:luc reporter gene. Overexpression of GRIP1 further enhanced v-Src potentiation of ER 

AF-1 (7-9 fold, Fig. 8A left). CBP also slightly increased Src effects on AF-1, similar to its action 

on basal AF-1 [24]. Thus, v-Src synergizes with overexpressed GRIP1 and CBP, suggesting that 

Src activation of AF-1 can occur when AF-1 activity is mediated by contacts with GRIP1 and 

CBP.  We further examined whether the S118 independent and PD 98059 resistant component of 

Src action also synergizes with GRIP1.  GRIP1 synergized with v-Src to activate GAL-AF-1 with 

the triple serine mutation S104, 106,118 A (Fig. 8A, right) both with and without PD 98059. We 

conclude that the S118-independent and PD resistant component of the Src pathway of AF-1 

potentiation is active when AF-1 is mediated by the pi60 coactivator GRIP1. 

As noted above, both AF-1 and AF-2 both recruit the pl60-CBP complex, but the two ER 

domains contact different surfaces on the coactivators. AF-1 contacts the C-terminal domain of 

GRIP1 [24], whereas AF-2 contacts one of the multiple pi60 NR Boxes, which are located in the 

middle portion of GRIP1 [13,26-29]. Thus, deletion of the C-terminus of GRIP1 prevents AF-1 

activity without affecting AF-2. To test whether AF-1/GRIP1 contacts were needed for v-Src 

enhancement of AF-1, we overexpressed a C-terminal deletion of GRIP1 (1-1121aa), which lacks 

the site for AF-1 binding [24]. The GRTP1 mutant missing the C-terminus failed to cooperate with 

v-Src to enhance AF-1 and reduced activation by v-Src (Fig.8B). Similar observations were also 

obtained in the presence of tamoxifen activated ER (data not shown). Thus, the C-terminal deleted 

GRIP1 has a dominant negative effect on Src activation of AF-1. Taken together, these 

observations confirm that Src can potentiate AF-1 under conditions where AF-1 activity is 

mediated by contacts with the GRIP1 C-terminus. It may also indicate that Src activation of AF-1, 

like basal AF-1 activity, requires the GRIP1/CBP complex or its functional equivalent 

13 
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Src potentiates CBP and GRIP1 activation functions. 

The above studies suggest that Src potentiation of ER AF-1 is compatible with circumstances in 

which AF-1 activity is mediated by contacts with GRIP1 and CBP, but the studies are neutral as to 

whether Src affects the activities of GRIP1 and CBP or some other target. To gain insight into this 

latter question, we investigated how Src affected the transcriptional activation functions of CBP 

and GRIP1. GRIP1 or CBP fused to the DNA binding domain of GAL4 activate transcription 

when they are tethered to the GALRE reporter gene (Fig. 8C).  Cotransfection of v-Src greatly 

increased both the transcriptional activity of CBP and GRIP1. We conclude that v-Src has the 

potential to change the activities of the GRIP1/CBP coactivator complex. Below we discuss the 

possibility that this complex may be one of the candidates for a Src/JNK target (see Discussion). 
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Discussion 

We were encouraged to investigate whether elevated Src potentiates ER action by two 

observations. Fust, in addition to estrogen, ER activity is also stimulated by signaling cascades 

initiated at tyrosine kinases. Second, Src tyrosine kinase activity is often elevated in breast 

cancers, whose proliferation is stimulated by ER activation. Our studies indicate that expression 

of constitutively active forms of St, or cell stimulation with the cytokine TOFo, both of whrch 

lend to JNK activation [56,72], enhances activation of reporter gene expression by the estrogen- 

ER complex and powerfully enhances the otherwise weak regulation by the tamoxifen-ER 

complex. These effects are observed both in transiently transfected HeLa cells and in MCF-7 

breast cells which express endogenous ERs. Src action upon the ER is mediated through a robust 

activation of the ER AF-1 function. This is seen most easily when the AF-1 region is removed 

from the remainder of the ER and fused to a heterologous DNA binding domain from the yeast 

GAL4 protein. Src action did not require the integrity of tyrosine 537 in the ER-LBD, which has 

been reported to be directly phosphorylated by Src [60-62]. Src tyrosine kinase activity is required 

for its action upon AF-1, as mutations and drugs that inactivate the kinase block the ability of 

ability Src to stimulate ER activity. Thus, taken together, our results suggest that elevated Src 

kinase activity results in elevated ER AF-1 activity. 

The mechanism of Src enhancement of AF-l activity is unusual. Previous studies have 

demonstrated that growth factors enhance AF-1 activity via a signal transduction pathway that is 

mediatedby Ras, Raf, MEK, and the ERK kinases. We therefore expected that Src stimulation of 

ER activity might proceed through a similar pathway. However, transfection of dominant negative 

Ras, Raf 1, and MEK mutants, or treatment of cells with PD 98059, which blocks Raf 1 inputs to 

MEK, only partially inhibited Src potentiation of AF-1. This suggested that Src also enhanced AF- 

1 activity via a second pathway and, indeed, dominant negative versions of Rac, MEKK and 

JNKK also inhibited Src enhancement of AF-1 activity. Src cooperates both with overexposed 
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ERK and overexpressed JNK to generate even higher AF-1 activity. Thus, the Src pathway 

leading to potentiation of AF-1 proceeds at least as much through JNKs and as it does through 

ERKs. 

Although the pathway from Src to enhancement of AF-1 activity clearly runs through 

Rac/MEKK/JNKK and JNKs, it is unclear how the JNKs bring about the enhancement of AF-1 

activity. One possibility is that the JNKs directly phosphorylate the AF-1 domain and thereby 

modify its function, as previously shown for transcription factors c-jun [73,74] and Elk-1 [75]. 

Our in vitro studies weigh against this possibility, as they indicate that JNKs fail to bind AF-1 

(data not shown) and that they also fail to phosphorylate the ER A/B domain in vitro. Although it 

is possible that these failures reflect a requirement for an accessory protein not supplied in vitro, it 

is most likely an indication that the JNKs cannot efficiently phosphorylate the AF-1 domain, as 

activated JNKs require no accessory proteins to phosphorylate other substrates [74,76,77]. Our in 

vivo studies also suggest that JNK action is independent of direct ER phosphorylation. The major 

site of phosphorylation in the AF-1 region is S118 and mutation of this residue to alanine blocks 

AF-1 phosphorylation and enhancement of AF-1 activity by EGF, activated Ras, and other 

activators of ERK kinases. JNKs do not activate AF-1 via phosphorylation at SI 18. Replacement 

of SI 18 with alanine only partly reduces Src stimulation of AF-1 activity and the residual activation 

is mediated through an ERK independent pathway. We infer that this residual action is due to Src- 

activated JNK and this has been confirmed with overexpressed JNKs. In addition, the Src to JNK 

cascade targets at least two subdomains within AF-1, from amino acids 1-94, and 101-129. The 

first of these domains contains no potential sites for JNK phosphorylation. Furthermore, 

replacement of the serine cluster, including the MAP kinase phosphorylation site (S118) has no 

effect on the response of AF-1 to JNK activation. 

How does Src-activated JNK enhance AF-1? One attractive possibility is that activated 

JNKs target a protein that, itself, affects AF-1 action. Recent studies indicate that AF-1 works by 

recruiting pl60/CBP coactivators by means of a direct contact between AF-1 and the C-terminus of 

the pi60 [24]. We have confirmed that Src enhancement of AF-1 activity can also occur in the 
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presence of overexpressed GRIP1 and CBP, and that this enhancement requires the C-terminus of 

GRIP1. Thus, one possibility is that the AF-1 mediating activities of the pl60/CBP complex are 

the target for JNK. Accordingly, v-Src was able to enhance the transcriptional activity of both 

GRIP1 and CBP when they were directly tethered to DNA. One obvious question is that if, 

indeed, v-Src does enhance the activity of the GRIP1/CBP complex, and given that both AF-1 and 

AF-2 work by binding a GRIP 1/CBP complex, then why would v-Src preferentially enhance AF- 

1 activity? We have previously shown that the AF-1 and AF-2 functions of different nuclear 

receptors both bind to pi 60s, but bind to pi 60 different surfaces and require different pi 60 

transcriptional outputs [24,78]. Thus, v-Src could preferentially affect AF-1 activity by 

preferentially affecting a subset of pi60 transcriptional inputs or outputs that are required for AF-1 

action. 

We stress that the sole positive evidence for Src/JNK targeting of the coactivator complex 

is that Src potentiates the transcriptional activation functions of both GRIP1 and CBP when they 

are fused to GAL4 and tethered to a promoter. We stress that this experiment is suggestive, but is 

only suggestive. While JNKs or something under the control of JNKs might phosphorylate 

GRIP1 itself, or another component of the complex (Fig. 9), there are other, equally likely, 

possibilities. For example, JNKs might directly or indirectly phosphorylate and modify the 

activities of corepressors that are suspected of modulating AF-1 action. Exploratory studies are 

underway to examine these and other possibilities. 

Finally, we also speculate that Src enhancement of AF-1 may have consequences on 

cellular responses to estrogen. Breast cancer samples and cell lines almost invariably have elevated 

Src tyrosine kinase activity [50]. Some of those tumors and cell lines also express ER and are 

stimulated to grow by estrogens. In such cases, ER is believed to enhance proliferation by 

enhancing the expression of target genes encoding regulators of proliferation. We have shown 

here that ovefexpression of v-Src leads to increases in ER transcriptional activity in breast cells, 

and that this effect occurs in the presence of estradiol, the absence of hormone and, most 

strikingly, in the presence of tamoxifen. Thus, increases in Src kinase activity could, via 
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Stimulation of ER transcriptional potency, enhance the ability of estrogen to induce cellular 

proliferation in breast cancer and breast cancer cell lines. Moreover, increased Src kinase activity 

could also lead to increased tamoxifen agonist activity, which might play a role in the development 

of tamoxifen resistance. It has been noted that tyrosine kinase inhibitors genistein and Herbimycin 

A inhibit cellular proliferation in response to estrogen [79-82]. Both of these inhibitors block Src 

activity in breast cancer cells and we also observed that these inhibitors also inhibit Src 

enhancement of ER AF-1 activity. It is therefore possible that both drugs could block estrogen- 

induced proliferation by inhibiting Src enhancement of ER action in those breast cancer cell lines 

and this requires investigation. 
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Materials and methods 

Mammalian Reporter Genes and Expression Vectors 

EREII-HSV-TK-CAT, a reporter gene containing two vitellogenin EREs upstream of the herpes 

simplex virus TR proximal promoter (-109/+45), has been previous described [83]. The GAL4 

responsive reporter gene GK1 contains five GAL4 response elements upstream of a minimal 

adenovirus Elb promoter that has been previously described [84]. 

ER expression vectors have been described previously. pSG5-ER, pSG5-ERG400V [85]. 

pSG5-ERA(A/B), and Al-100, Al-116, A130-184, and A95-184 have been described previously 

[57]. pSG5-GAL4, -GAL4-ER(A/B), -GAL4-ER(LBD), -GAL4-VP16 expression vectors have 

been described [57,86]. The pSG5-ERY537R, Y537S, SI 18E and SI 18R mutants and the pSG5- 

GAL4-ER(A/B) mutants in which each the phosphorylation sites at Serine (S) 104, S106, SI 18, 

were mutated to Alanine (A) were created by synthesizing double-stranded oligonucleotides which 

encode the mutant sequence and using Quick Change Site-directed Mutagenesis Kits (Stratagene). 

The mutated sequences were verified by DNA sequencing using Sequenase Kits (Stratagene). The 

GAL-4-ER(A/B) mutant containing the triple phosphorylation site mutation (S104, 106, 118A) 

was made by multiple rounds of mutagenesis. 

Many signal transduction molecule expression vectors were kindly provided as followings: 

pCMV-v-Src (Dr. M. Bishop, University of California, San Francisco); pCMV-c- 

SrcRF(K295R,Y527F) and pCMV-c-Src (Dr. Joan Brugge, Ariad Pharmaceuticals, Inc.); 

Constitutively activated pCMV-c-Src (Y527F) (Dr. Tony Hunter, Salk Institute for Biological 

Studies); Dominate negative pcDNA3-Racl(S17N) and -Raf( 1-257) (Dr. H. Goldberg, University 

of Toronto, Canada); pCMV-Flag-p38 (Dr. Roger Davis, University of Mass. Medical Center). 

Dominate negative Ras(S17N), MEK(K97R), pSRa-JNKK(Kl 16R), MEKK(K432M), HA- 

JNK1 and HA-ERK2 have been described[56]. Coactivator expression vector pCMV-CBP was a 

gift from Drs. M. Rosenfeld (UCSD). pSG5-GRIPl has been previously described [29]. 
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Cell Culture and Transfection 

HeLa cells were maintained and transfected as previously described [85]. Briefly, around 70% 

confluent HeLa cells were transfected with 5 \ig of (ERE)2-TK-CAT or 5x GAL4-Luc reporter 

gene, 1 |ig ß-galactosidase plasmid, 1 \ig ER expression vector, and other coactivator and signal 

molecule expression vectors (2 |ig) as indicated in figure legend. After 20 hrs incubation, Cells 

were lysed and CAT, LUC and ß-galactosidase assays were performed using standard methods. 

The ß-galactosidase activity was used to correct the variations of transfection efficiency in CAT 

and LUC activities. The hormones (10 nM Estradiol, ICI, Raloxifene, and 5 ^M Tamoxifen) and 

kinase inhibitors (300 |iM Genistein (Sigma), or 1 jiM Herbimycin A (Sigma), and 100 |xm PD 

98059 (Calbiochem) were added immediately after transfection. CAT and LUC activities 

represented the averages from triplicate wells with less than 20% deviation. Experiments were 

repeated at least three times. 

Western Blots 

HeLa cells were transfected with ER and v-Src expression vectors, or empty control vectors, and 

reporter genes as described, plated and incubated overnight. Half were prepared for Western blot 

analysis, the remaining half was used for standard CAT and ß-galactosidase assays. The following 

day, the transfected cells were washed in cold PBS and treated with 1ml of luciferase lysis buffer 

on ice for five minutes. The lysate was scraped off the dish, transferred to eppendorf tubes and 

pelleted in an eppendorf microfuge for 15 minutes at 4°C. Protein contents were determined and 

15ug of cell proteins were separated on a 10% SDS-polyacrylamide gel and transferred to a pre- 

wetted Immuno-Blot PVDF membrane (Bio-Rad, Hercules CA), overnight at 90mA, 30V using a 

standard transfer apparatus. Following transfer, the membrane was incubated at room temperature 

in 5% non-fat milk in PBS-T (lxPBS, 0.1% Tween-20) for 1 hour, and washed twice in PBS-T 

for 10 minutes. The primary anti-ER antibody (HC-20, Santa Cruz antibodies, Santa Cruz, CA) 

was diluted 1:2000 in PBS-T and incubated with the membrane for 1 hour, followed by PBS-T 

washes, 1x15 minutes and then 2x5 minutes. The membrane was then incubated for 45 minutes 
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with horse-radish peroxidase conjugated anti-rabbit IgG (Santa Cruz antibodies) diluted 1:2000 in 

PBS-T, followed by PBS-T washes, 1x15 minutes and 4x5 minutes in PBS-T. After the last 

wash, the membrane was developed according to manufacturers instructions with a standard ECL 

kit (Amersham-Pharmacia Biotech), covered with Saran wrap and exposed to X-ray film. 

GST-Fusion  Proteins 

GST-ER(ATB) and GST-cJun (amino acids 1-79, from Dr. A. DeFranco, UCSF) fusion protein 

were prepared as previously described [85]. Briefly, bacteria (500 ml LB media) expressing the 

fusion proteins were resuspended in 15 ml of TST buffer (0.5 M Tris, 1.5 M NaCl, 0.5% tween 

20, pH=7.5) and sonicated mildly for 2-3 min. in ice. The debris was pelleted at 12,000 rpm for 1 

h in an ss34 rotor. The supernatant was rotated gently for 2 hrs at cold room with 0.5 ml of 

glutathione sepharose 4B beads that had been prewashed with 5-10 vol. of TST buffer. GST- 

fusion proteins beads were washed with 10-20 vol. PBS 0.01% Nonidet P-40 and resuspended in 

1:1 vol. of IPAB-150 (20 raM HEPES, 150 mM KC1, 5 mM MgCl2, 10% glycerol, 1 mM 

dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride, and protease inhibitors, pH 7.9) for storage 

at 4 °C until use. 

In Vitro Kinase Assay 

Src, MAP, and JNK kinase assays were carried out following the manufactory's protocol (Upstate 

Biotechnology) with purified Src, MAP, JNK kinases, as provided. Briefly, purified Src, MAP, 

JNK kinases were mixed with the corresponding substrates or GST-ER(A/B), the reaction started 
32 by adding the corresponding reaction buffer containing (y-   P)ATP, then mixed gently and 

incubated at 30 °C for 15-30 min. After addition of 40% TCA or 2x SDS-PAGE loading buffer to 

stop the reaction, the phosphorylated kinase substrates and GST-ER(A/B) were detected by liquid 

scintillation counter or autoradiography of 10-12% SDS-PAGE. 
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Figure Legends 

Fig. 1. v-Src potentiates estrogen receptor AF-1 transcriptional activity. (A) Activity of an ERE -CAT 

reporter gene in HeLa cells transfected with expression vectors for full length ER (G400V derivative), 

and for v-Src as indicated in the presence of ligands, estradiol (E2), tamoxifen (Tarn), ICI 182,780 (ICI), 

and raloxifene (Ral). Inset shows basal activities on an expanded scale. (B) Western blots were performed 

upon extracts of cells that were transfected with different amounts of ER expression vector, or control 

vector, +/- transfected v-Src. The lower panel shows transcriptional activation of the ERE responsive 

reporter gene as a function of ER levels +/- transfected v-Src. (C) Activity of the ERE reporter gene in 

HeLa cells transfected with an expression vector for ER, the indicated amount of expression vector for v- 

Src after treatment with tamoxifen (closed circles) or vehicle (open boxes). Fold inductions were 

determined by comparing the relative CAT activity in the presence of v-Src to that in the absence of v-Src 

(set as 1 fold). (D) Activity of the ERE-CAT reporter gene in MCF-7 breast tumor cells which express 

endogenous ERs. (E) Activity of a reporter gene with five GAL4 response elements in cells transfected 

with expression vectors for GAL4 fusion proteins to the ER A/B region (GAL4-AB), to the ER ligand 

binding domain (GAL-LBD), or to the herpes virus VP16 activation domain (GAL4-VP16) in the presence 

or absence of co-transfected v-Src. Fold inductions were determined as in Fig. 1C. 

Fig. 2. Src action upon ER is independent of tyrosine 537. Activity of the ERE-CAT reporter was 

determined in the presence of empty pSG5 expression vector, or expression vectors for ER, ERG400V, 

ERY537R and ERY537S, both in the presence of an empty expression vector or an expression vector for 

v-Src. 

Fig. 3. Src action on ER AF-1 requires Src tyrosine kinase function. Shown is fold induction of the 

GALRE reporter gene activated by GAL-ER(A/B) in the absence of Src (normalized to 1) and by c-Src, 

by constitutively active c-Src (c-Src (Y527F)), by an inactive derivative of c-Src (c-Src(K295R, Y527F)), 
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or by v-Src in the absence or presence of tyrosine kinase inhibitors (Genistein or Herbimycin). The effect 

of the inhibitors on v-Src-enhanced and basal stimulation by GAL-Elklis shown in the inset.. 

Fig. 4. v-Src activates AF-1 through ERK and JNK MAP kinases. (A) The ER A/B domain is a target 

for ERK but not Src kinase. Assay of kinase activity using purified Src and ERK kinases, a peptide Src 

substrate (amino acids 6-20 of cdc-2), PHAS-I (a peptide ERK substrate), and purified GST-ER (A/B) 

fusion protein , as indicated. (B) v-Src action on AF-1 is partly blocked by dominant negative Ras 

(Ras(S17N)), Rafl (Raf( 1-257)), MEK (MEK(K97R)), or the PD 98059 compound that blocks activation 

of ERK MAP kinases. Induction of a GALRE reporter gene activated with GAL-ER (A/B) and v-Src in 

the presence of the indicated dominant negative or drug inhibitor. Inset on right shows the expected 

complete blockade of EGF action on Elk-1 by the dominant negatives and PD compound. (C) v-Src action 

on AF-1 is also blocked by dominant negative Rac (Rac(S17N)) or MEKK (MEKK(K432M)). An assay 

similar to B of reporter gene response to Src in the presence of the indicated dominant negative inhibitor. 

(D) TNFa and Src action on AF-1 is blocked by dominant negative JNKK(K116R). Induction of the 

GALRE reporter gene activated by GAL-ER(AZB) in HeLa cells co-transfected with dominate negative 

JNKK (JNKK(K116R)) as indicated. After 20 hours incubation, the cells were treated with TNFa for 1 

hour or transfected with v-Src expression vector, as indicated, then incubated for 6 hrs before assay. (E) 

ERK2 and JNK1, but not p38, cooperate with Src to activate AF-1. Induction of the GALRE reporter 

gene activated by GAL-ER(AZB) in the presence of activated Src and elevated ERK2, JNK1, or p38 as 

indicated. 

Fig. 5. Src activated ERKs, but not JNKs, require SI 18 in the A/B domain to activate AF- 1. (A) Src 

potentiation of AF-1 is in part independent of SI 18. Induction of the ERE responsive reporter gene 

activated by ER, or ERS118E and ERS118R, with and without transfected v-Src. (B) Induction of the 

GALRE reporter gene activated by GAL-ER(A/B) or the indicated mutant thereof, with v-Src. v-Src 

induction of wild type GAL-ER(A/B) was set as 100%. (C) Src activation of AF-1 that is independent of 

SI 18 is resistant to PD 98059, the ERK pathway inhibitor. Src effects are shown as fold induction of 
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reporter gene activity. (D) Src potentiation on ER(A/B) with mutations in S118 serine cluster cooperates 

with JNK but not ERK kinases. Induction of the GALRE reporter gene activated with GAL-ER(A/B) 

S118, v-Src, and vectors for JNK1 or ERK2, as indicated. 

Fig. 6. Src potentiates transcription from two separable subdomains of AF-1. (A) Fold 

induction that v-Src elicits from the ERE reporter gene activated by the indicated ER derivative in 

the presence of tamoxifen. (B) The sensitivity of v-Src enhancement of tamoxifen response to 

PD 98059 was determined in the presence of the indicated ER derivative in the presence of 

tamoxifen. All values (after subtraction of backgrounds) were normalized to that obtained in the 

presence of fully wild type ER, which was set at 100%. 

Fig. 7. ER(A/B) is not phosphorylated by JNK1 in vitro. GST-cJun or GST ER(A/B) was in 

vitro phosphorylated by immunopurified JNK1 kinase extracted from HeLa cells treated with 

TNFa (a Src/JNK activator), and analyzed on 10% SDS-PAGE with autoradiography. Control 

experiments (see, Fig. 3) indicate that GST-ER(AZB) is a good substrate for ERKs. 

Fig. 8. Src/JNK potentiates ER AF-1 mediated by GRIP1 and CBP. (A) Elevated GRIP1 or 

CBP cooperate with Src in activation of AF-1. Left panel shows induction of the GALRE reporter 

gene activated with ER-GAL(A/B) and the effects of transfected v-Src GRIP1 or CBP as indicated. 

Right panel shows the substantial effects of GPJPl on v-Src potentiation of the triple serine ER- 

AF-1 mutant even in the presence of PD 98059 as indicated. (B) A mutant of GPJPl deficient for 

mediating basal AF-1 acts as a partial dominant negative for Src action on AF-1. Response of the 

reporter gene to v-Src in the presence of elevated amounts of the indicated derivative of GRIP 1. 

GRJP1(1-1121) is missing amino acids 1122-1462 and does not bind to ER(A/B) or mediate AF-1 

action in the absence of Src. (C) CBP and GRJP1 activation functions are potentiated by Src. 

Activity of the GALRE:luciferase reporter gene activated by GAL4 fusions to CBP or GRIP1 as 

indicated and cotransfected with expression vector for v-Src. 
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Fig. 9. Pathways of v-Src Stimulation of ER(A/B) transcriptional activity. One pathway leads 

from Src through Ras, Raf, MEK, and ERKs and results in phosphorylation of the ER (A/B) on 

Sl 18. The second pathway leads to Rac, MEKK, JNKK, and JNKs. JNKs do not 

phosphorylate S118.   Among many possibilities JNKs may target coactivators that mediate AF-1 

activity. This is indicated by an arrow from JNK to Coactivators. That it is merely a possibility is 

indicated by the question mark. 
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